A dynamic dendritic refractory period regulates burst discharge in the electrosensory lobe of weakly electric fish.
نویسندگان
چکیده
Na+-dependent spikes initiate in the soma or axon hillock region and actively backpropagate into the dendritic arbor of many central neurons. Inward currents underlying spike discharge are offset by outward K+ currents that repolarize a spike and establish a refractory period to temporarily prevent spike discharge. We show in a sensory neuron that somatic and dendritic K+ channels differentially control burst discharge by regulating the extent to which backpropagating dendritic spikes can re-excite the soma. During repetitive discharge a progressive broadening of dendritic spikes promotes a dynamic increase in dendritic spike refractory period. A leaky integrate-and-fire model shows that spike bursts are terminated when a decreasing somatic interspike interval and an increasing dendritic spike refractory period synergistically act to block backpropagation. The time required for the somatic interspike interval to intersect with dendritic refractory period determines burst frequency, a time that is regulated by somatic and dendritic spike repolarization. Thus, K+ channels involved in spike repolarization can efficiently control the pattern of spike output by establishing a soma-dendritic interaction that invokes dynamic shifts in dendritic spike properties.
منابع مشابه
Conditional spike backpropagation generates burst discharge in a sensory neuron.
Backpropagating dendritic Na(+) spikes generate a depolarizing afterpotential (DAP) at the soma of pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish. Repetitive spike discharge is associated with a progressive depolarizing shift in somatic spike afterpotentials that eventually triggers a high-frequency spike doublet and subsequent burst afterhyperpolarization...
متن کاملModel of gamma frequency burst discharge generated by conditional backpropagation.
Pyramidal cells of the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus have been shown to produce oscillatory burst discharge in the gamma-frequency range (20-80 Hz) in response to constant depolarizing stimuli. Previous in vitro studies have shown that these bursts arise through a recurring spike backpropagation from soma to apical dendrites that is...
متن کاملOscillatory and burst discharge in the apteronotid electrosensory lateral line lobe
Oscillatory and burst discharge is recognized as a key element of signal processing from the level of receptor to cortical output cells in most sensory systems. The relevance of this activity for electrosensory processing has become increasingly apparent for cells in the electrosensory lateral line lobe (ELL) of gymnotiform weakly electric fish. Burst discharge by ELL pyramidal cells can be rec...
متن کاملPersistent Na+ current modifies burst discharge by regulating conditional backpropagation of dendritic spikes.
The estimation and detection of stimuli by sensory neurons is affected by factors that govern a transition from tonic to burst mode and the frequency characteristics of burst output. Pyramidal cells in the electrosensory lobe of weakly electric fish generate spike bursts for the purpose of stimulus detection. Spike bursts are generated during repetitive discharge when a frequency-dependent broa...
متن کاملTTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron.
Immunocytochemical and electrophysiological techniques were used to localize TTX-sensitive sodium channels (NaChs) over the soma-dendritic axis of basilar and nonbasilar pyramidal cells of the electrosensory lateral line lobe (ELL) of weakly electric fish (Apteronotus leptorhynchus). Dense NaCh-like immunolabel was detected on the membranes of basilar and nonbasilar pyramidal cell somata. Punct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2003